
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.
Clear["Global`*⋆"]

1.  Floating point. Write 84.175, -528.685, 0.000924138, and -362005 in floating-point 
form, rounded to 5S (5 significant digits).

Clear["Global`*⋆"]

ScientificForm[{84.175, -−528.685, 0.000924138, -−362005.}, 5]

8.4175 × 101, -−5.2868 × 102, 9.2414 × 10-−4, -−3.6201 × 105

I almost gave the cell the greenie because the significant digits are shown correctly. But as 
for the text’s odd penchant for showing a zero to the left of the decimal point, I don’t know 
how to imitate that.

3.  Small differences of large numbers may be particularly strongly affected by rounding 
errors. Illustrate this by computing 0.81534/(35*724 -35.596) as given with 5S, then 
rounding stepwise to 4S, 3S, and 2S, where “stepwise” means round the rounded num-
bers, not the given ones.

Clear["Global`*⋆"]

It took a little while to figure out what was wanted. An extra difficulty is a typo in the 
problem, which can be seen in the first cell below.
ScientificForm[0.81534 /∕ (35.724 -− 35.596), 5]

6.3698

ScientificForm[0.8153 /∕ (35.72 -− 35.6), 4]

6.794

ScientificForm[0.815 /∕ (35.7 -− 35.6), 3]

8.15

ScientificForm[0.82 /∕ (36 -− 36), 2]

Power::infy: Infiniteexpression 
1

0
 encountered. !

ComplexInfinity

The green cells above match the answers in the text.

5.  Rounding and adding. Let a1, . . . , an be numbers with aj correctly rounded to Sj digits. 
In calculating the sum a1+ . . . +an, retaining S = min Sj significant digits, is it essential 
that we first add and then round the result, or that we first round each number to S 
significant digits and then add?
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Add first.

7.  Quadratic equation. Solve x2 - 30 x+1 by (4) and by (5), using 6S in the computation. 
Compare and comment.

pol[x_] = x2 -− 30 x + 1

1 -− 30 x + x2

N[Solve[pol[x] ⩵ 0, x], 6]

{{x → 0.0333705}, {x → 29.9666}}

Numbered line (5) has the content that x1 = c
a x2

, where x1 is the first sol’n above, and x2 

is the second. As the below cell shows, in the present case the sol’ns for x1 turn out to be 
apparently the same (for a=c=1). If significant digits had not been imposed, the sol’ns 
would have been exactly the same, since all was rational. Even if truncated to output preci-
sion, the sol’n (of x1e) shows no alteration.

x1 =
1

1 × 29.96662954709576554233499492926619720702`6.
0.0333705

x1e =
1

1 × 29.9666
0.0333705

9.  Do the computations in problem 7 with 4S and 2S.

N[Solve[pol[x] ⩵ 0, x], 4]

{{x → 0.03337}, {x → 29.97}}

N[Solve[pol[x] ⩵ 0, x], 2]

{{x → 0.033}, {x → 30.}}

The above cells show a slight effect of rounding.

11. Theorems on errors. Prove theorem 1(a) for addition.

Hey, I guessed this one right. And added a couple of examples to test out the idea versus 
subtraction.
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Abs[ϵ] = Absx + y -− x + y =

Absx -− x + y -− y = Abs[ϵx + ϵy] ≤ Abs[ϵx] + Abs[ϵy] ≤ βx + βy

e = Abs[1 + 2 -− (0.99 + 2.01)]

0.

e = Abs[1 -− 2 -− (0.99 -− 2.01)]

0.02

13.  Division. Prove theorem 1(b) for division.

I can’t follow this proof, even though it is complete in the text answer.

15.  Logarithm. Compute Log[a] - Log[b] with 6S arithmetic for a = 4.00000 and b = 

3.99900 (a) as given and (b) from Log[ ab ].

Clear["Global`*⋆"]

First I do the separate calculations
N[Log[4.00000], 6]

1.38629

N[Log[3.99900], 6]

1.38604

and make a subtraction. Though Mathematica shows lots of decimal places, the calculation 
itself was only performed to six significant digits. But the difference of these two intermedi-
ate results equals the precision of the Log of the divided starting values. Probably because 
default machine precision gives better precision than demanded.
1.3862943611198906` -− 1.3860443298646814`

0.000250031

 If I only subtract the two results, both to the requested accuracy of six places, then there is 
a difference compared to the Log of the divided starting values, but not in the decimals of 
requested significance.
NumberForm[1.38629 -− 1.38604, {6, 9}]

0.000250000

NLog
4.00000

3.99900
, 6

0.000250031

19.  Exponential function. Calculate 1ⅇ  = 0.367879 6(S) from the partial sums of 5 - 10 
terms of the Maclaurin series (a) of ⅇ-−x with x = 1, (b) of ⅇx with x = 1 and then taking 
the reciprocal. Which is more accurate?
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19.  Exponential function. Calculate 1ⅇ  = 0.367879 6(S) from the partial sums of 5 - 10 
terms of the Maclaurin series (a) of ⅇ-−x with x = 1, (b) of ⅇx with x = 1 and then taking 
the reciprocal. Which is more accurate?

Clear["Global`*⋆"]

mackee = Normal[Series[ⅇ-−x, {x, 0, 5}]]

1 -− x +
x2

2
-−
x3

6
+
x4

24
-−

x5

120

N[mackee] /∕. x → 1

0.366667

mackeep = Normal[Series[ⅇx, {x, 0, 5}]]

1 + x +
x2

2
+
x3

6
+
x4

24
+

x5

120

1

N[mackeep] /∕. x → 1

0.368098

Yes, the difference looks significant. I would have missed the guess about which is more 
accurate. The below cells confirm the text claim that the reciprocal is more accurate in this 
instance.
mackeeL = Normal[Series[ⅇ-−x, {x, 0, 50}]];

N[mackeeL] /∕. x → 1

0.367879

0.3678794411714424` -− 0.3666666666666667`

0.00121277

0.3678794411714424` -− 0.36809815950920244`

-−0.000218718

21. Binary conversion. Show that 23 = 20*101 + 3*100 = 16 + 4 + 2 +1 = 24 + 22 + 
21 + 20 = (1 0 1 1 1.)2 can be obtained by the division algorithm 
2 ⌊23 remainder 1 = c0
2 ⌊11 remainder 1 = c1
2 ⌊5 remainder 1 = c2
2 ⌊2 remainder 0 = c3
0 remainder 1 = c4

BaseForm[23, 2]

101112

The above answer, with unauthorized total dependence on Mathematica, agrees with the 
text answer. 
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The above answer, with unauthorized total dependence on Mathematica, agrees with the 
text answer. 

23.  Show that 0.1 is not a binary machine number.

Clear["Global`*⋆"]

BaseForm[0.1, 2]

0.000110011001100110011012

Not exactly the same argument as the text answer.

25.  CAS experiment. Approximations. Obtain x = 0.1 = 3
2 ∑m=1

∞ 2-−4 m from problem 23. 

Which machine number (partial sum) Sn will first have the value 0.1 to 30 decimal digits?

Okay, what am I doing here? Starting from the right. The table is taking n from 1 to 15, and 
n also governs the number of terms in the Sum, the more terms, the more precision. The 
{60, 30} under NumberForm specifies 60 digits of precision and 30 digits shown to the right 
of the decimal point. The answer to the problem question is that Sn=13, with 13 terms, 13 
partial sums to a precision of 30 decimal digits. The block of numbers would look more 
impressive if I knew how to progressively suppress the vacant zeros on the right, but I didn’t 
find an easy way.
Clear["Global`*⋆"]

TableForm

Tablen, NumberFormN
3

2
Sum2-−4 m, {m, 1, n}, {60, 30}, {n, 1, 15}

1 0.093750000000000000000000000000
2 0.099609375000000000000000000000
3 0.099975585937500000000000000000
4 0.099998474121093800000000000000
5 0.099999904632568400000000000000
6 0.099999994039535500000000000000
7 0.099999999627471000000000000000
8 0.099999999976716900000000000000
9 0.099999999998544800000000000000
10 0.099999999999909100000000000000
11 0.099999999999994300000000000000
12 0.099999999999999600000000000000
13 0.100000000000000000000000000000
14 0.100000000000000000000000000000
15 0.100000000000000000000000000000

I don’t understand why the text says it will take 26 terms to get to the desired accuracy. It 
looks to me like it takes exactly half that many.

27.  Backward recursion. In problem 26. Using ⅇx < ⅇ (0 < x < 1), conclude that 
Abs[In] ≤ ⅇ

(n+1) → 0 as n → ∞. Solve the iteration formula for  In-−1 = (ⅇ-−In)
n , start 

from I15 ≈ 0 and compute 4S values of I14, I13, . . ., I1 .
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27.  Backward recursion. In problem 26. Using ⅇx < ⅇ (0 < x < 1), conclude that 
Abs[In] ≤ ⅇ

(n+1) → 0 as n → ∞. Solve the iteration formula for  In-−1 = (ⅇ-−In)
n , start 

from I15 ≈ 0 and compute 4S values of I14, I13, . . ., I1 .

Clear["Global`*⋆"]

As for the function in question, the integral value looks murky.
eyen = Integrate[ⅇx xn, {x, 0, 1}]

ConditionalExpression

(-−1)1-−n (Gamma[1 + n] -− ⅇ Subfactorial[n]), Re[n] > -−1

However, it is not hard for me to accept that the inequality, as seen in a plot, is true regard-

ing eyen and ⅇ
n+1 . That is, ‘eyen’ is clearly less than ⅇ

n+1 , which tends to zero.

Plot
ⅇ

n + 1
, Table[{eyen}, {x, 0, 1}], {n, 1, 7},

ImageSize → 200, PlotRange → {{-−1, 7}, {0, 1.5}}

0 2 4 6

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Limit
ⅇ

n + 1
, n → ∞

0

I need to get the recursive terms.  I’d like to get Mathematica to spit out a neat table follow-
ing a do-loop, but for now I have to settle for doing the numbers by hand.

I13 = N
ⅇ -− 0.1812

14


0.18122

I12 = N
ⅇ -− 0.1812

13


0.19516

The final digit in the above number makes it yellow. 
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I11 = N
ⅇ -− 0.1952

12


0.210257

I10 = N
ⅇ -− 0.2103

11


0.227998

I9 = N
ⅇ -− 0.2280

10


0.249028

I8 = N
ⅇ -− 0.2490

9


0.274365

I7 = N
ⅇ -− 0.2744

8


0.305485

I6 = N
ⅇ -− 0.3055

7


0.344683

I5 = N
ⅇ -− 0.3447

6


0.395597

I4 = N
ⅇ -− 0.3956

5


0.464536

I3 = N
ⅇ -− 0.4645

4


0.563445

I2 = N
ⅇ -− 0.5634

3


0.718294

I1 = N
ⅇ -− 0.7183

2


0.999991

I could not get I15 so I’ll compensate by throwing in I0. At least it will make the grid match 
up.
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I0 = N
ⅇ -− 1.000

1


1.71828

The table. The table in g2 below provides the first four columns in the grid.  The last col-
umn has S4 numbers, the basic idea behind the problem. So if the 4th column is compared 
with the last column, an accumulating margin of error is observed.
eyeb = Sort[{0.181220, 0.19516, 0.210257, 0.227998,

0.249028, 0.274365, 0.305485, 0.344683, 0.395597, 0.464536,
0.563445, 0.718294, 0.999991, 1.71828, "null"}, Greater]

{1.71828, 0.999991, 0.718294, 0.563445,
0.464536, 0.395597, 0.344683, 0.305485, 0.274365,
0.249028, 0.227998, 0.210257, 0.19516, 0.18122, null}

eyeb4 = Sort[{0.1812, 0.1952, 0.2103, 0.2280, 0.2490, 0.2744, 0.3055,
0.3447, 0.3956, 0.4645, 0.5634, 0.7183, 1.000, 1.718, "null"}, Greater]

{1.718, 1., 0.7183, 0.5634, 0.4645, 0.3956, 0.3447,
0.3055, 0.2744, 0.249, 0.228, 0.2103, 0.1952, 0.1812, null}

g1 = "Nr" , "Equa" , "Sm", "Table", "Hand", "Hand S4";

g2 = Tablen, HoldForm
ⅇ -− ⅇ

n+1

n
,

ⅇ -− ⅇ
n+1

n
,

N
ⅇ -− ⅇ

n+1

n
, eyeb[[n]], eyeb4[[n]], {n, 15, 1, -−1};
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Grid[Prepend[g2, g1], Frame → All]

Nr Equa Sm Table Hand Hand S4

15
ⅇ-− ⅇ

n+1

n
ⅇ
16

0.169893 null null

14
ⅇ-− ⅇ

n+1

n
ⅇ
15

0.181219 0.18122 0.1812

13
ⅇ-− ⅇ

n+1

n
ⅇ
14

0.194163 0.19516 0.1952

12
ⅇ-− ⅇ

n+1

n
ⅇ
13

0.209099 0.210257 0.2103

11
ⅇ-− ⅇ

n+1

n
ⅇ
12

0.226523 0.227998 0.228

10
ⅇ-− ⅇ

n+1

n
ⅇ
11

0.247117 0.249028 0.249

9
ⅇ-− ⅇ

n+1

n
ⅇ
10

0.271828 0.274365 0.2744

8
ⅇ-− ⅇ

n+1

n
ⅇ
9

0.302031 0.305485 0.3055

7
ⅇ-− ⅇ

n+1

n
ⅇ
8

0.339785 0.344683 0.3447

6
ⅇ-− ⅇ

n+1

n
ⅇ
7

0.388326 0.395597 0.3956

5
ⅇ-− ⅇ

n+1

n
ⅇ
6

0.453047 0.464536 0.4645

4
ⅇ-− ⅇ

n+1

n
ⅇ
5

0.543656 0.563445 0.5634

3
ⅇ-− ⅇ

n+1

n
ⅇ
4

0.67957 0.718294 0.7183

2
ⅇ-− ⅇ

n+1

n
ⅇ
3

0.906094 0.999991 1.

1
ⅇ-− ⅇ

n+1

n
ⅇ
2

1.35914 1.71828 1.718

29.  Approximations of π = 3.14159265358979. . . are 227  and 355113 . Determine the 

corresponding errors and relative errors to 3 significant digits. 

Clear["Global`*⋆"]

tt = NumberFormN
22

7
, {60, 30}

3.142857142857143000000000000000

tf = NumberFormN
355

113
, {60, 30}

3.141592920353983000000000000000

errort = N[π -− "3.142857142857143000000000000000", 6]

-−0.00126449

19.1 Introduction 790.nb     9



To three significant digits, this would be

-−0.00126

And then there is the relative error. The following answer does not agree exactly with the 
text answer.

relerrort =
-−0.00126

π

-−0.00040107

For the other fractional approximation, the error would be
diff = N[π -− "3.141592920353983000000000000000", 6]

-−2.66764 × 10-−7

To three significant digits,  this would be

-−2.66*⋆^-−7

And the relative error would be

relerrorf =
-−2.66*⋆^-−7

π

-−8.46704 × 10-−8
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